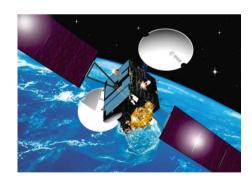


EGNOS Programme and System

ESESA Aviation Workshop 26th - 27th October 2010



Content

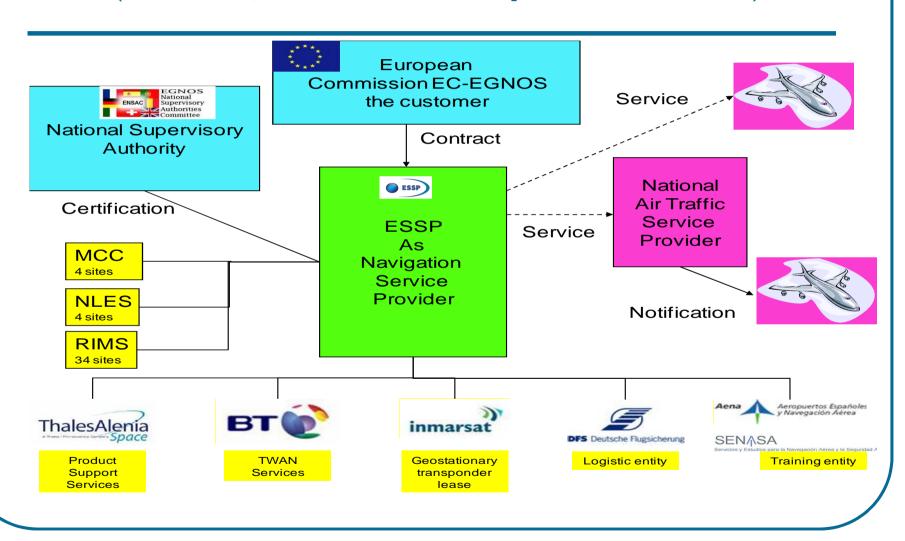
- 1. Introduction to EGNOS programme
- 2. EGNOS System
- 3. EGNOS Services
- 4. EGNOS Programme evolutions

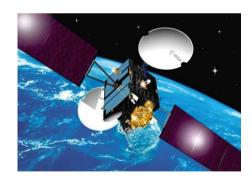
1. Introduction to EGNOS Programme

EGNOS foundations

(ETG) European Tripartite Group

(EOIG) Egnos Operators and Infrastructure Group





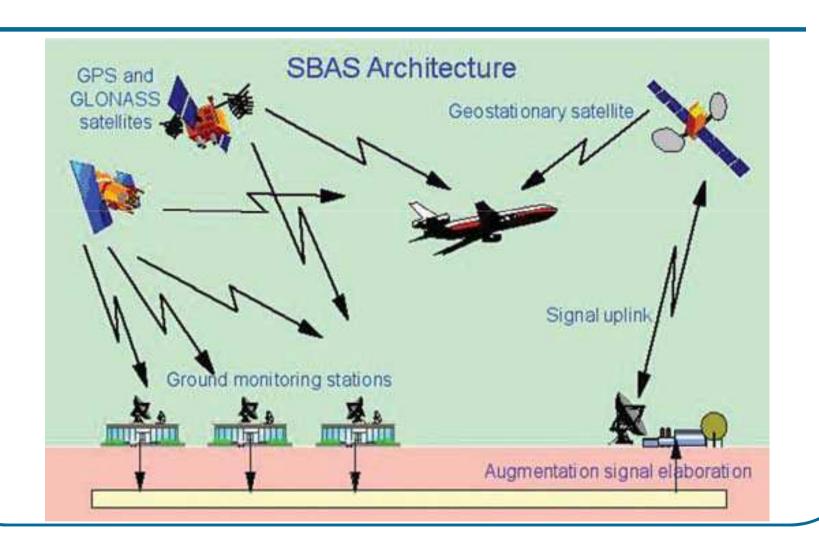
EGNOS (Actors, Roles & Responsibilities)

2. EGNOS System

What is EGNOS?

EGNOS = European Geostationary Navigation Overlay Service

EGNOS is the European Satellite Base Augmentation System (SBAS)


EGNOS "augment" the GPS L1 signal

Accuracy of positioning is improved up to 1 and 2 meters

Integrity and safety is improved by broadcasting alerts within a few seconds of the occurrence of a failure in GPS and by providing a level of confidence on the position computation with EGNOS

EGNOS Basis

EGNOS elements

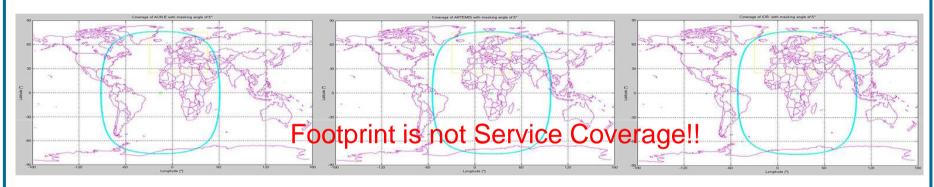
3 Satellites EGNOS

6 NLES
Navigation
Land Earth
Stations

4 MCC Mission Control

2 Support Facilities

GPS



34 RIMS + 7 under deployment

EGNOS Space Segment

3 Geostationary Satellites

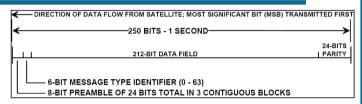
PRN120 Inmarsat AOR-E

PRN124 ESA Artemis

PRN126 Inmarsat IOR-W

- PRN120 and PRN124 broadcast EGNOS messages
 - Operational signal (test mode), since July 2006
 - •Broadcast EGNOS messages MT0 usable by non-SoL users
- •PRN126 is used by industry for EGNOS System Releases tests

EGNOS Service Coverage

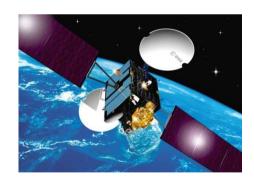


EGNOS Signal-In-Space Message Type 0

Message Type 0 (Don't Use for Safety Applications message)

Message currently transmitted by the EGNOS Signal in Space

When the Message Type 0 is on, EGNOS can not be used for Safety of Life applications and therefore is not usable for aviation.



Туре	Contents
0	Don't use for safety applications (for SBAS testing)
1	PRN Mask assignments, set up to 51 of 210 bits
2 to 5	Fast corrections
6	Integrity information
7	Fast correction degradation factor
8	Reserved for future messages
9	GEO navigation message $(X, Y, Z, \text{ time, etc.})$
10	Degradation Parameters
11	Reserved for future messages
12	SBAS Network Time/UTC offset parameters
13 to 16	Reserved for future messages
17	GEO satellite almanacs
18	Ionospheric grid point masks
19 to 23	Reserved for future messages
24	Mixed fast corrections/long term satellite error corrections
25	Long term satellite error corrections
26	Ionospheric delay corrections
27	SBAS Service Message
28	Clock-Ephemeris Covariance Matrix Message
29 to 61	Reserved for future messages
62	Internal Test Message
63	Null Message

EGNOS SIS Message Types

2. EGNOS Services

EGNOS Services

EGNOS Open Service (OS)

Service Declaration: 1st October 2009

Target: mass market applications

Service Definition Document available

http://www.essp-sas.eu/docs/printed_documents/egnos_sdd_os_v1.pdf

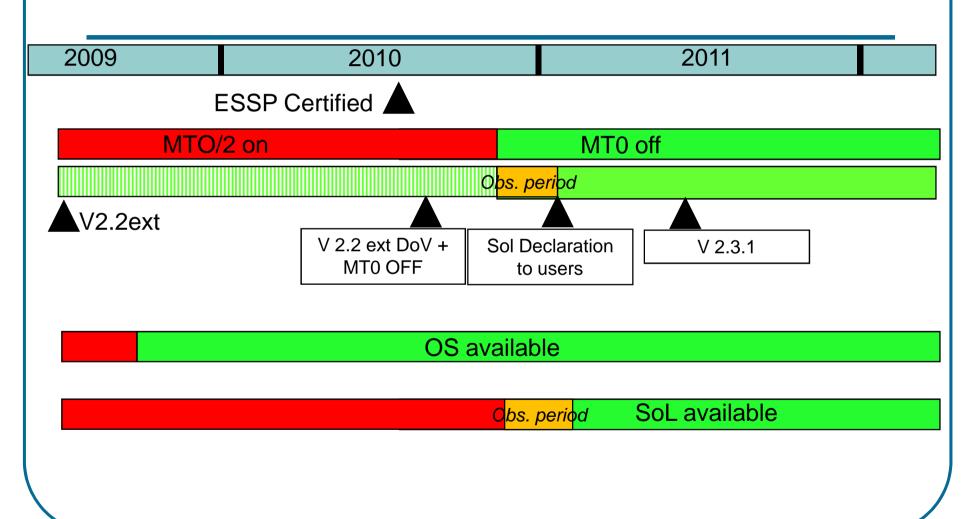
EGNOS Safety-of-Life (SoL) Service

Service Declaration: Planned Oct/Nov 2010

Target: civil aviation

Commercial Data Distribution Service (CDDS)

Target: application development

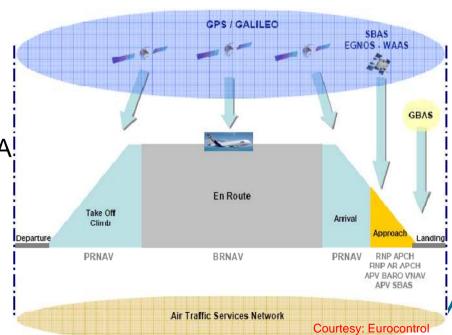

Future CDDS under definition by GSA & EC

CDDS expected to be available in 2011

EGNOS Services Schedule

EGNOS SoL: WHY? Civil Aviation GNSS strategy

11th ICAO ANC (2003):


Aviation approach for GNSS:

Final Objective: If GNSS is the better solution with regard to safety and cost/benefit, it should be used as "unique navigation means" for all phases

of flight.

36th ICAO Assembly (2007):

Implementation of RNAV
and RNP ops for en-route and TMA
Implementation of APV
(Baro-VNAV and/or SBAS)
in every IFR runway in 2016

Advantages of EGNOS for Aviation

EGNOS Safety-of-Life Service is an enabler for Approach with Vertical Guidance (APV) and provides both, lateral and vertical guidance, with the following identified benefits:

Reduce decision height Minima:

APV SBAS (GPS + EGNOS): 250 ft

Safety increase by providing vertical guidance during approach (statistics show that a high proportion of accidents due to Controlled Flight Into Terrain (CFIT) occur during Non-Precision Approach (NPA)).

Increased accessibility with lower minima, making landings possible with lower visibility levels at airports not already equipped with ILS or during ILS outages.

More flexibility in procedure design:

<u>Curved/segmented precision approaches</u> possible with time and fuel savings, and environmental benefits from reduced noise impact and avoidance of high-density populated areas during approach.

Possibility to exploit <u>different approach angles</u> for wake-vortex avoidance.

Limited impact on user avionics:

Software upgrade of avionics receiver. Receivers are currently available.

Utilization of the same frequency as GPS.

<u>Limited impact on the Flight Management System</u> (FMS) related to the enabling of APV operations.

EGNOS SoL Service implementation

ESSP as a provider of the EGNOS SoL Service is based on:

- ESSP Certification as ANSP and EGNOS system verification
- Service agreements between the ESSP and the different European Air Navigation Service Providers (ANSPs)

2. EGNOS Programme Evolutions

EGNOS System Releases

- 1. ESRv2.2ext: operational since November 2008
- 2. ESRv2.3.1: delivery by EC planned in Oct. 2010
 - Deployment : mid-2011
 - <u>Contents</u>: CPF upgrade + Inmarsat 4 GEO + Athens/Alexandria RIMS + CCF upgrade
- Agadir/Abu Simbel/Tamanrasset RIMS
- 3. ESRv2.4.1: expected delivery end 2011
 - Deployment : mid-2012
 - <u>Expected contents</u>: RIMS-D, NLES New Generation, CCF Hardware & COTS, ASQF/PACF HW/SW
 - LPV200 & NOTAM tool ATC I/F
- 4. ESRv2.4.2 : expected delivery end 2013

Expected improvements

ESRv2.3.1 (operational mid-2011)

Coverage Area extension

South ECAC (additional RIMS)

Northern ECAC (improved ionosphere monitoring)

Improved robustness (CPF upgrades)

ESRv2.4.1 (operational mid-2012)

Improved robustness & performance (resolution of obsolescence issues: RIMS-D, new NLES, CCF hardware)

Coverage Area extension

Improved level of service with LPV200

Improved NOTAM service

Questions?

